ICA 2013 Montreal
Montreal, Canada
2 - 7 June 2013

Biomedical Acoustics
Session 4pBA: High-Frequency Ultrasound (20-80 MHz)

4pBA7. Determining breast pathology in surgical margins with high-frequency ultrasound: phantom and numerical simulations

Timothy E. Doyle*, Monica Cervantes, Laurel A. Thompson, Joseph E. Roring, Matthew A. Grover, J. A. Chappell, Bradley J. Curtis, Janeese E. Stiles and Brett D. Borget

*Corresponding author's address: Physics, Utah Valley University, MS 179, Orem, Utah 84058-5999, Timothy.Doyle@uvu.edu

Two parameters in high-frequency ultrasound (20-80 MHz) have been found to be sensitive to a range of pathologies in resected margins from breast conservation surgery: The number of peaks (the peak density) in the waveform spectrum and the slope of the Fourier transform of the waveform spectrum. Previous studies have indicated that peak density and slope may correlate to microscopic heterogeneity in tissue structure, which is modified by atypical and malignant processes. To test this hypothesis, through-transmission and pulse-echo measurements were acquired from gelatin-based phantoms containing polyethylene microspheres and nylon fibers (2.5-10% volume concentration). Multipole methods were also used to model through-transmission measurements of tumor progression in lobular carcinoma in situ. The simulated breast tissue contained 1000-2000 nucleated cells with random lobular cavities. The peak densities of the heterogeneous phantoms were significantly greater than those of the homogeneous control samples, whereas the slopes were less. Similarly, the models produced spectra with peak densities that increased with malignant cell proliferation. The results are consistent with breast tissue data, and provide a physical mechanism for the use of peak density and slope in the imaging of breast tissues with atypical and malignant pathologies. This work was supported by Utah Valley University.

Published by the Acoustical Society of America through the American Institute of Physics
1. INTRODUCTION

Obtaining negative (cancer free) margins in breast conservation surgery (BCS) is critical for local control of cancer in the affected breast and reducing re-excision rates [1-5]. A study of 994 women with ductal carcinoma in situ (DCIS) showed that long-term ipsilateral disease-free survival strongly correlated with margin status, and that positive or close margins following the last surgical treatment significantly reduced 5-year and 10-year ipsilateral event-free survival independent of treatment strategy [6]. Negative margins are particularly difficult to achieve for invasive lobular carcinoma (ILC), with six studies reporting 49-63% positive or close margins following the initial surgery, and one study reporting 39% positive or close margins with the use of full thickness excision and oncoplastic surgery [7].

Touch preparation cytology and frozen section analyses are currently being used for the intraoperative histopathology of margins, but are limited by the inability to identify close margins (touch preparation cytology), the ability to sample only a small portion of the margin (frozen section analyses), and the need for an on-site trained pathologist [8-12]. Other methods are therefore being investigated to estimate margin sizes both before and during surgery, including pre-operative CT and MRI [13], high-resolution two-dimensional specimen mammography [14], Raman spectroscopy [15,16], optical coherence tomography [17], diffuse reflectance spectroscopy [12,18], terahertz wave imaging [19], and radiofrequency spectroscopy [20,21].

Ultrasound has also been researched for the intraoperative assessment of margins with standard clinical instrumentation, imaging modalities, and frequency ranges (7.5-14 MHz) [3,22-26]. Results show a significant reduction in positive margin resection rates from 41% to 9% [24], 17.5% to 3.6% [26], and 29% to 3.5% [3]. Since the approach relies on the detection of tumor edges from the interpretation of sonograms, an experienced radiologist is required during the surgery.

A pilot study by Doyle et al. recently showed that high-frequency (HF) ultrasound (20-80 MHz) may be able to differentiate between normal, benign, and malignant pathologies in resected margin specimens based on the spectral signatures in the ultrasonic signals [27]. The method differed from standard clinical ultrasound in that excised margins were examined by placing the margins between opposing transducers. Measurements were taken using both a through-transmission mode where one transducer is a transmitter and the other is a receiver, and a pulse-echo mode where the pulse travels through the margin, reflects from the hard wear-face of the opposing transducer, and travels back to the transmitting transducer.

Doyle et al. also used signal processing techniques that differed from standard clinical ultrasound [27]. The structure of both the first-order spectra, corresponding to one Fourier transform of the time-domain waveform, and the second-order spectra, corresponding to two successive Fourier transforms of the time-domain waveform, were analyzed and correlated to margin pathology. The results showed that two parameters were independently sensitive to margin pathology and could be used to differentiate between normal, benign, and malignant breast pathologies. These parameters were the number of peaks and valleys, heretofore called the peak density, in the first-order spectra, and the slope of the log-normal second-order spectra.

Since the first-order peak density (henceforth referred to as peak density) and second-order spectral gradient (henceforth referred to as spectral gradient) were sensitive to the pathology of breast tissue, it is hypothesized that changes in these parameters can be attributed to modifications in the tissue microstructure that give rise to changes in the ultrasonic scattering properties of the tissue. The primary modification in tissue microstructure is the degree of heterogeneity present, which increases ultrasonic scattering by increasing the number of scattering sites or surfaces. An increase in scattering leads to an increase in spectral structure due to multiple scattering, interference effects between tissue structures, or preferential enhancement or suppression of forward scattering at specific frequencies due to changes in the geometry and size of scatterers.

To test this hypothesis, gelatin-based phantoms were made with polyethylene microspheres and nylon fibers to simulate breast tissue with a range of heterogeneous microstructures. The solid microspheres and fibers were chosen to simulate lobular and ductal architectures with hyperplastic or malignant pathologies. The phantoms were tested with HF ultrasound following procedures developed for resected margins [27]. Numerical simulations were additionally performed to test the hypothesis with a model of tumor progression in lobular carcinoma in situ (LCIS). Breast tissue was simulated at the cellular level with spherical cells and nuclei, and various stages of malignant cell proliferation in lobular structures were modeled.
2. METHODS

2.1 Phantom Studies

Phantom specimens with tissue-like ultrasonic properties were made using a formula comprised of gelatin (Knox® gelatin) and psyllium fiber (Metamucil®) [28]. Polyethylene microspheres with diameters ranging from 58-390 μm and nylon fibers of 10-mm length and diameters ranging from 130-250 μm were mixed into the phantoms prior to gelling. Table 1 shows the sample matrix and final volume concentrations of inclusions after mixing. Three control samples were also made with no inclusions. Phantoms were cast into disk-shaped samples of 45-mm diameter and 20-mm thickness.

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Diameter (μm)</th>
<th>Volume Concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene Microspheres</td>
<td>58 ± 5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>98 ± 8</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>196 ± 16</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>390 ± 35</td>
<td>2.5</td>
</tr>
<tr>
<td>Nylon Fibers</td>
<td>130</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>6.5</td>
</tr>
</tbody>
</table>

The introduction of solid microsphere and fiber inclusions into phantoms resulted in microstructures that approximated several common breast pathologies. The homogeneity of control samples corresponded to the stromal proliferation and loss of ductal architecture as found in fibroadenomas. The cylindrical geometry of the solid fibers corresponded to the proliferation of cells within breast gland ducts as found in atypical ductal hyperplasia or DCIS. The small microspheres corresponded to the proliferation of cells within lobules as found in LCIS. Finally, the large microspheres corresponded to small, sub-millimeter tumors as found in invasive ductal carcinoma (IDC).

Through-transmission and pulse-echo data were acquired from phantom specimens with the use of the experimental setup shown in Fig. 1. An aluminum test fixture (left, Fig. 1) was used to support the specimen and to position the two ultrasonic immersion transducers (Olympus NDT, V358-SU, 50 MHz, 0.635-cm dia. element) above and below the sample for measurements. A HF square-wave pulser-receiver (UTEX, UT340, middle bottom, Fig. 1) and a digital storage oscilloscope (Hewlett-Packard, HP-54522A, 500 MHz, 1Gs/s, middle top, Fig. 1) were used to generate the ultrasonic pulses, amplify the received signals, and digitize the waveforms. Waveforms were averaged during signal acquisition and downloaded onto a notebook PC using LabVIEW (right, Fig. 1). The specimen thickness was recorded for each ultrasonic measurement.

![FIGURE 1. Photograph of experimental setup for acquiring HF ultrasonic data from phantom specimens with introduced heterogeneities, including (from left to right) phantom specimens, aluminum test fixture, digital oscilloscope (top) with ultrasonic pulser-receiver (bottom), and notebook PC.](image-url)
The ultrasonic measurements produced signals that were substantially different from ultrasonic signals typically acquired for medical imaging or tissue characterization. Ultrasound signals used for medical imaging arise from dispersed scattering centers, typically cells, nuclei, and tissue inhomogeneities such as blood vessel walls. The resulting signals are therefore from diffuse reflection. In contrast, the signals collected in this study were of the transmitted pulse after propagating through the tissue specimen, either in through-transmission mode or pulse-echo mode where the pulse experiences specular reflection from the surface of the second transducer. The signals were therefore pulse-like with amplitudes significantly greater than background noise.

The ultrasonic data were analyzed in the frequency (spectral) domain since previous experimental and numerical studies had indicated that the structure of HF ultrasonic spectra were sensitive to neoplastic changes in breast tissues [27,29-31]. The spectral signatures were additionally robust and insensitive to sample variations such as thickness and attenuation [27].

First-order power spectra were obtained by subtracting background waveforms from the phantom waveforms, windowing the main signals in the waveforms, padding the waveforms to 4000 points to increase the spectral resolution, performing a fast Fourier transform (FFT), and then taking the absolute value of the complex spectra. The peak density was calculated by counting the number of zero crossings of the derivative of the spectrum in the 20-80 MHz band. Figure 2(a) displays examples of ultrasonic spectra from fibroadenoma, normal, and LCIS tissue specimens obtained during BCS, showing progressively increasing peak densities with microstructural heterogeneity [27]. Figure 2(b) displays examples of ultrasonic spectra from corresponding phantom microstructures, again showing progressively increasing peak densities with microstructural heterogeneity.

Second order power spectra of the waveforms were obtained by performing a second forward FFT on the first-order spectra, taking the absolute value of the complex function, and normalizing the curves. The second-order spectra showed a maximum at 0 μs and sloped downward with multiple peaks at various positions. The spectral gradient was determined by calculating the slope of the log of the second-order spectrum, which was approximately linear in the 0-0.3 μs range. Figure 2(c) shows second-order power spectra of margins and other breast tissue specimens from breast conservation surgery. Spectra are offset in (a) and (b) for clarity.

2.2 Numerical Studies

Microscopic breast cancer was simulated by modeling normal breast tissue as random three-dimensional packings of 1018-1049 spherical, nucleated cells interspersed with large random cavities corresponding to the terminal ductal lobular units [29,30]. The cavities were then filled in stages with malignant cells to a total of 2075 cells (normal + malignant) to mimic the growth pattern of LCIS (Fig. 3). Malignant cells were differentiated from normal cells by giving them larger nuclei to represent nuclear pleomorphism. Simulations were performed on five

FIGURE 2. (a) HF through-transmission ultrasonic spectra of margins and other breast tissue specimens from breast conservation surgery. (b) HF through-transmission ultrasonic spectra of phantoms with small fibers (130-180 μm diameter) and small beads (196-μm diameter). (c) HF pulse-echo second-order spectra of margins and other breast tissue specimens from breast conservation surgery. Spectra are offset in (a) and (b) for clarity.
different tissue structures where the cell and cavity positions were varied to provide a statistical measure of the results.

An iterative multipole method was used to simulate the propagation of HF ultrasound through the virtual tissue. The method uses multipole expansions to efficiently calculate the multiple scattering of ultrasound from spherical inclusions in a medium [32]. The iterative multipole method has been improved to model multiple scattering from structured inclusions such as nucleated cells [29,30], and has been used to differentiate malignant from normal human breast epithelial cells in monolayer cell cultures [31]. For this study forward-scattered ultrasonic waves were modeled to simulate through-transmission measurements in the 20-80 MHz range.

3. RESULTS AND DISCUSSION

The spectra of the heterogeneous phantom specimens displayed first-order peak densities that were significantly greater than those of the homogeneous control samples [Fig. 4(b)]. This trend was similar to the trend observed for breast tissue specimens [Fig. 4(a)] [27]. Phantoms with large fibers (250 μm diameter) showed the highest peak densities with values greater than 3x those of the controls. The peak densities for the 390-μm microspheres, however, did not follow this trend. This discrepancy, plus the high MAD values for the phantom specimens, are believed to be due to non-uniform mixing of the inclusions in the phantom gel plus entrainment of air bubbles.
The spectra of heterogeneous phantom specimens also displayed second-order spectral gradients that were significantly lower than homogeneous control samples [Fig. 5(b)]. Again, the spectral gradient trend of the homogeneous (control) vs. heterogeneous (with inclusions) phantom samples was similar to the trend for breast tissue specimens [Fig. 5(a)] [27]. Although homogeneous breast pathologies (adenomas and fat necrosis) and phantom specimens can be differentiated from the more heterogeneous microstructures, differentiation between the individual heterogeneous classifications is more difficult, particularly for the phantom specimens. Again it is believed that this is due to non-uniform mixing and air-bubble entrainment.

The LCIS computer simulations produced spectra [Fig. 6(a)] with peak densities that were proportional to the degree of malignant cell proliferation within the lobular cavities [Fig. 6(b)]. The peak density trend for the LCIS model in Fig. 6(b) is very similar to that for breast tissue specimens as shown in Fig. 4(a). The models were additionally highly reproducible for simulated tissues with varying lobule and cell positions, yielding peak densities with very low MAD values except for the 57% proliferation level.

The results from Figs. 4, 5, and 6 indicate that the first-order peak density and second-order spectral gradient in HF ultrasonic spectra are linked to microstructural heterogeneity. In the phantom studies, the presence of inclusions increased the peak density and decreased the spectral gradient. These inclusions mimic the histopathology of the
most common breast cancers, including those that fill the mammary ducts and lobules with malignant cells as in DCIS and LCIS, respectively, and those that form microtumors as in ILC and invasive ductal carcinoma (IDC). The breast tissue specimens showed trends that indicated that peak density increases [Fig. 4(a)] and spectral gradient decreases [Fig. 5(a)] with the level of tissue heterogeneity. These trends were observed to some extent for the phantom peak densities [Fig. 4(b)] but mostly not observed for the phantom spectral gradients [Fig. 5(b)]. The large median absolute deviations in the phantom peak densities and the lack of a trend for most of the phantom spectral gradients are probably due to the specimen mixing problems.

In the LCIS numerical simulations, the increase in the number of malignant cells within the lobules increased the heterogeneity or complexity of the tissue by two mechanisms. First, it introduced a foreign cell type, malignant epithelial cells, into tissue initially comprised of fewer cell types: for this simulation normal epithelial cells. Second, the spherical structure of the lobules lose their uniformity by the in situ growth of malignant cells. The peak densities in the LCIS model strongly correlated with the level of tissue heterogeneity, a result consistent with the BCS specimen data.

Since the peak density and spectral gradient are sensitive to the microstructure (pathology) of the tissue, the HF ultrasonic method can be regarded as a microanalytical approach as opposed to a strictly imaging approach. However, it would be relatively straightforward to expand these data acquisition and signal processing methods into an imaging modality. Microanalytical ultrasound would therefore be complementary to ultrasonic imaging, similar to the relationship between electron probe microanalysis and scanning electron microscopy. In this case, instead of displaying ultrasonic density, the sonogram would display a dot map with each pixel conveying information about the pathology of that position in the imaged tissue. The information could most easily be conveyed using color to represent different pathology types (normal, fibroadenomas, ductal carcinomas, etc.).

4. CONCLUSIONS

Increased heterogeneity in simulated phantom and in silico tissues produced higher first-order peak densities and lower second-order spectral slopes, results consistent with data from resected margins. The results provide a physical mechanism for the use of these parameters in the imaging of breast tissues with atypical and malignant pathologies.

ACKNOWLEDGMENTS

We gratefully thank Leigh Neumayer, Rachel Factor, Bryan Welm, Alana Welm, and our other colleagues in the Breast Disease-Oriented Team (BDOT) at the Huntsman Cancer Institute for their continuing support, assistance, and advice. We also thank Brent Bargeron and Sam Rushforth at Utah Valley University for their support of this research. This project was funded by a Grant for Engaged Learning (GEL) from Utah Valley University.

REFERENCES


